

Thinking Recursively
Part V

Outline for Today
● Recursive Backtracking

● Finding a needle in a haystack.
● On Tenacity

● Computational grit!
● Optional<T>

● Sending data out of functions.
● CHeMoWiZrDy

● Having some fun with the periodic table. 😃

A Warm-Up Exercise

bool containsE(const string& str) {
 for (char ch: str) {
 return ch == 'e' || ch == 'E';
 }
 return false;
}

Answer at
https://cs106b.stanford.edu/pollev

What’s Wrong With This Code?

https://cs106b.stanford.edu/pollev

bool containsE(const string& str) {
 for (char ch: str) {
 return ch == 'e' || ch == 'E';
 }
 return false;
}

What’s Wrong With This Code?

It’s exceedingly rare to have
an unconditional return

statement in a for loop. This
almost certainly indicates

the presence of a bug.

Specifically, this
code makes its final
decision based on

the first character of
the string.

Recap from Last Time

A Little Word Puzzle

“What nine-letter word can be reduced to a
single-letter word one letter at a time by

removing letters, leaving it a legal word at
each step?”

One Solution

S T A R T L I N G

One Solution

S T A R T I N G

One Solution

S T A R I N G

One Solution

S T R I N G

One Solution

S T I N G

One Solution

S I N G

One Solution

S I N

One Solution

I N

One Solution

I

New Stuff!

Our Solution, In Action

bool isShrinkableWord(const string& word,
 const Lexicon& english) {
 if (!english.contains(word)) {
 return false;
 }
 if (word.length() == 1) {
 return true;
 }

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkableWord(shrunken, english)) {
 return true;
 }
 }
 return false;
}

bool isShrinkableWord(const string& word,
 const Lexicon& english) {
 if (!english.contains(word)) {
 return false;
 }
 if (word.length() == 1) {
 return true;
 }

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkableWord(shrunken, english)) {
 return true;
 }
 }
 return false;
}

bool isShrinkableWord(const string& word,
 const Lexicon& english) {
 if (!english.contains(word)) {
 return false;
 }
 if (word.length() == 1) {
 return true;
 }

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 return isShrinkableWord(shrunken, english); // Bad idea!
 }
 return false;
}

bool isShrinkableWord(const string& word,
 const Lexicon& english) {
 if (!english.contains(word)) {
 return false;
 }
 if (word.length() == 1) {
 return true;
 }

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 return isShrinkableWord(shrunken, english); // Bad idea!
 }
 return false;
} It’s exceedingly rare to have

an unconditional return
statement in a for loop. This
almost certainly indicates

the presence of a bug.

Specifically, this
code makes its final
decision based on

the first character it
tries removing.

When backtracking recursively,
don’t give up if your first try fails!

Hold out hope that something else will
work out. It very well might!

Recursive Backtracking
if (problem is sufficiently simple) {

 return whether the problem is solvable

} else {

 for (each choice) {

 try out that choice

 if (that choice leads to success) {

 return success;

 }

 }

 return failure;

}

Note that if the recursive call succeeds,
then we return success. If it doesn't
succeed, that doesn't mean we've failed
– it just means we need to try out the

next option.

How do we know we’re correct?

Optional<T>

● The Optional<T> type represents either
an object of type T or is Nothing at all.

● It’s useful when working with recursive
functions that look for something that
may or may not exist.
● If a solution exists, return it as usual.
● Otherwise, return Nothing.

● If the Optional<T> is a value of type T,
you can call the .value() function to
retrieve the underlying value.

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

A

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

A

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

A
AT

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

A
AT

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

A
AT
ART

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

A
AT
ART

Generating the Answer
CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

A
AT
ART
CART

Time-Out for Announcement!

CoDa Move Continues
● Jonathan has now moved offices into the

new CoDa building. Yay!
● His office hours will be in CoDa B45,

starting today.
● Stop on by, and enjoy the CoDa building

while you’re there!

Back to CS106B!

Another Backtracking Example

A Great Tool of Science

Oooh! Letters!

Oooh! Letters!

Can We Do Better?

CHeMoWIZrDy
● Some words can be spelled using just

element symbols from the periodic table.
● For example:

CaNiNe FeLiNe PHYSiCs

UNIVErSITiEs HAlLuCINoGeNiCs

● Given a word, can we spell it using only
symbols from the periodic table?

● And, if so, how?

NoTiCe ThAt

capris

NoTiCe ThAt

capris

C apris

C

NoTiCe ThAt

capris

C apris

C

NoTiCe ThAt

capris

C apris Ca pris

C Ca

NoTiCe ThAt

capris

C apris Ca pris

CaP ris

C Ca

P

NoTiCe ThAt

capris

C apris Ca pris

CaP ris

C Ca

P

NoTiCe ThAt

capris

C apris Ca pris

CaP ris CaPr is

C Ca

P Pr

NoTiCe ThAt

capris

C apris Ca pris

CaP ris CaPr is

CaPrI s

C Ca

P Pr

 I

NoTiCe ThAt

capris

C apris Ca pris

CaP ris CaPr is

CaPrI s

C Ca

P Pr

 I

CaPrIS

 S

NoTiCe ThAt

RhHeCuRhSiON

● BaSe CaSe:
● The empty string can be spelled using just

element symbols.
● RhHeCuRhSiV STeP:

● For each element symbol:
– If the string starts with that symbol, check if the

rest of the word is spellable.
– If so, then the original word is spellable too.

● Otherwise, no option works, so the word isn't
spellable.

Closing Thoughts on Recursion

You now know how to use recursion to
view problems from a different

perspective that can lead to short and
elegant solutions.

You’ve seen how to use recursion to
enumerate all objects of some type,

which you can use to find the
optimal solution to a problem.

You’ve seen how to use recursive
backtracking to determine whether

something is possible and, if so to find
some way to do it.

Congratulations on making it this far!

Your Action Items
● Finish Chapter 9.

● It’s all about backtracking, and there are
some great examples in there!

● Finish Assignment 3.
● As always, get in touch with us if we can

help out!

Next Time
● Algorithmic Analysis

● How do we formally analyze the complexity
of a piece of code?

● Big-O Notation
● Quantifying efficiency!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

